

A206587


Numbers k such that the periodic part of the continued fraction of sqrt(k) has even length.


2



1, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 83, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This is A206586 and the squares, A000290.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


MATHEMATICA

Select[Range[100], IntegerQ[Sqrt[#]]  EvenQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &]


PROG

(PARI)
cyc(cf) = {
if(#cf==1, return([])); \\ There is no cycle
my(s=[]);
for(k=2, #cf,
s=concat(s, cf[k]);
if(cf[k]==2*cf[1], return(s)) \\ Cycle found
);
0 \\ Cycle not found
}
select(n>#cyc(contfrac(sqrt(n)))%2==0, vector(400, n, n)) \\ Colin Barker, Oct 19 2014


CROSSREFS

Cf. A003814 (period has odd length).
Cf. A000290, A206586.
Sequence in context: A058654 A188435 A047517 * A192450 A039064 A187953
Adjacent sequences: A206584 A206585 A206586 * A206588 A206589 A206590


KEYWORD

nonn


AUTHOR

T. D. Noe, Mar 20 2012


STATUS

approved



