Data visualization or data visualisation is viewed by many disciplines as a modern equivalent of visual communication. It involves the creation and study of the visual representation of data, meaning “information that has been abstracted in some schematic form, including attributes or variables for the units of information”.

A primary goal of data visualization is to communicate information clearly and efficiently via statistical graphics, plots and information graphics. Numerical data may be encoded using dots, lines, or bars, to visually communicate a quantitative message. Effective visualization helps users analyze and reason about data and evidence. It makes complex data more accessible, understandable and usable. Users may have particular analytical tasks, such as making comparisons or understanding causality, and the design principle of the graphic (i.e., showing comparisons or showing causality) follows the task. Tables are generally used where users will look up a specific measurement, while charts of various types are used to show patterns or relationships in the data for one or more variables.

Data visualization is both an art and a science. It is viewed as a branch of descriptive statistics by some, but also as a grounded theory development tool by others. The rate at which data is generated has increased. Data created by internet activity and an expanding number of sensors in the environment, such as satellites, are referred to as “Big Data”. Processing, analyzing and communicating this data present a variety of ethical and analytical challenges for data visualization. The field of data science and practitioners called data scientists have emerged to help address this challenge.

### Classification, dimensional reduction and chi2.

When talking about dimensional reduction in the context of machine learning you have many options; linear discriminant analysis (LDA), principal component analysis (PCA) and many other. Here I want to highlight a technique that I explored as part of a very large research project and which entails the usage of chi2.

### Knowledge diagram

There are many visualizations for tree-like data but it's more difficult to display true graph-like data in a way that one doesn't get lost in the bifurcation of relationships and nodes. The interactive diagram below is a great way to navigate…

### Data visualization with TypeViz

About TypeViz and using a math service as a backend for HTML data visualization.